MECÂNICA DE ANCELMO GRACELI GENERALIZADA dimensional - relativista indeterminada.





MECÂNICA GRACELI GENERALIZADA dimensional - relativista indeterminada




ψ     [ / ]   /[]

  ) [,] / [    ]     .


ψ     [ / ]   /[,]

  ) [,] / [    ]     .




ψ        / [ [ []  ] ]    .




   / ]]   ) [[ ][]

ψ] ]  .



 ψ   / [ [ ] []

 ] ψ] /    .





ψ    ) [[ ][]

ψ] .   . 






ψ         [ ] [ ][,] ]   .


O abrandamento de átomos por meio de arrefecimento produz um estado quântico único conhecido como condensado de Bose ou condensado de Bose-Einstein. Este fenômeno foi teorizado nos anos 20 por Albert Einstein, ao generalizar o trabalho de Satyendra Nath Bose sobre a mecânica estatística dos Fótons (sem massa) para átomos (com massa). (O manuscrito de Einstein, que se pensava estar perdido, foi encontrado em 2005 numa biblioteca da Universidade de Leiden). O resultado do trabalho de Bose e Einstein é o conceito de gás de Bose, governado pela estatística de Bose-Einstein que descreve a distribuição estatística de partículas idênticas de spin inteiro, conhecidas hoje em dia como Bósons. As partículas bosónicas, que incluem o Fóton e átomos como o He-4, podem partilhar estados quânticos umas com as outras. Einstein especulou que arrefecendo os átomos bosónicos até temperaturas muito baixas os faria colapsar (ou "condensar") para o mais baixo estado quântico acessível, resultando numa nova forma de matéria.

Esta transição ocorre abaixo de uma temperatura crítica, a qual, para um gás tridimensional uniforme consistindo em partículas não-interactivas e sem graus internos de liberdade aparentes, é dada por:

onde:

 é a temperatura crítica,
a densidade da partícula,
a massa por bóson,
constante de Planck,
constante de Boltzmann, e
função zeta de Riemann ≈ 2,6124.



 ψ        [ [ ]][Xk,Pl] = i]

 
ψ]]   .




ψ       / [ 

[ ] [[Xk,Pl] = i]] ]    .


Com o advento da Mecânica quântica as noções de distinção das partículas subatômicas e da ocupação de estados de energia sofreram sérias reformulações.

No começo do século XXBoltzmann havia chegado a forma correta da distribuição do número de partículas em função do nível de energia. Mas isso no âmbito da mecânica clássica.

Contudo, principalmente com o surgimento da moderna teoria quântica, o conceito de trajetória se torna seriamente prejudicado, quando não totalmente desnecessário e contraditório.

Uma trajetória implica o deslocamento de uma partícula (idealizada como um ponto matemático) no espaço e no tempo. Nesse sentido, uma trajetória física corresponderia, na matemática, a uma curva suave e diferenciável, completamente contínua em todos os seus pontos.

Porém, mesmo no trabalho de Einstein sobre o movimento browniano em 1905 (publicado juntamente com outros três trabalhos, a saber: o efeito fotoelétrico, o calor específico dos sólidos e a relatividade); esse cientista postulou trajetórias em zig-zag, descontínuas em inúmeros (para não dizer infinitos) pontos para as moléculas e átomos, assim como também as partículas movidas, fossem elas de pó, pólen, dentre outras. Assim, ainda no cenário da física clássica, as trajetórias suaves já eram admissíveis.

Com o entendimento trazido à luz pela interpretação do princípio da incerteza de Heisenberg e pela interpretação estatística da Função de onda dada por Max Born foi totalmente por terra a noção de que a partícula tinha trajetória definida.

Assim sendo, não se podem distinguir partículas cujas características sejam idênticas se se aproximam muito uma da outra, porque então não se pode identifica-las pela trajetória, já que para pontos muitos próximos, dependendo da velocidade, os pontos já não são discerníveis. A relação matemática que rege essa indeterminação fundamental é a relação da incerteza de Heisenberg:

[Xk,Pl] = i

onde Xk representa o operador posição, Pl representa o operador Momento linear e  o operador identidade.




ψ   / [ [ ]]]

ψ] /     .




*  [ ]]

ψ
].] ] .



Introduzida pela primeira vez em 1927 pelo físico alemão Werner Heisenberg,[2][3][4][5] a desigualdade formal que relaciona o desvio padrão da posição σx e o desvio padrão do momento σp foi derivada por Earle Hesse Kennard[6] mais tarde naquele ano e por Hermann Weyl[7] em 1928:

onde  é a constante de Planck reduzida.





    [[ ]]/

] [
,]ψ]] .





ψ [[ ]]

 ].],]ψ]/ ]  .

Dentro da estrutura que a física estatística possibilita, segue-se que com a ajuda de conjuntos estatísticos para um número médio de ocupação  dos estados  com a energia  da estatística de Fermi-Dirac:

Onde  é o potencial químico a temperatura e  a constante de Boltzmann.












  / [ [ ]]

,.]ψ ]  .




ψ      [  [ ] [,]

  ψ ] / ]    .






ψ     []

] /      [[ ]]     .






ψ  [[[ ]]  ) [

ψ [,]










ψ     [ [[ ]]

  ) [,]] /  ψ     .



   [[ ]] /   ) / [,].

, ] / ψ   .

magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

 = 9,274 008 99(37)·10-21 erg·G-1




  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.

[ ]


Comentários

Postagens mais visitadas deste blog